;(function() { window.createMeasureObserver = (measureName) => { var markPrefix = `_uol-measure-${measureName}-${new Date().getTime()}`; performance.mark(`${markPrefix}-start`); return { end: function() { performance.mark(`${markPrefix}-end`); performance.measure(`uol-measure-${measureName}`, `${markPrefix}-start`, `${markPrefix}-end`); performance.clearMarks(`${markPrefix}-start`); performance.clearMarks(`${markPrefix}-end`); } } }; /** * Gerenciador de eventos */ window.gevent = { stack: [], RUN_ONCE: true, on: function(name, callback, once) { this.stack.push([name, callback, !!once]); }, emit: function(name, args) { for (var i = this.stack.length, item; i--;) { item = this.stack[i]; if (item[0] === name) { item[1](args); if (item[2]) { this.stack.splice(i, 1); } } } } }; var runningSearch = false; var hadAnEvent = true; var elementsToWatch = window.elementsToWatch = new Map(); var innerHeight = window.innerHeight; // timestamp da última rodada do requestAnimationFrame // É usado para limitar a procura por elementos visíveis. var lastAnimationTS = 0; // verifica se elemento está no viewport do usuário var isElementInViewport = function(el) { var rect = el.getBoundingClientRect(); var clientHeight = window.innerHeight || document.documentElement.clientHeight; // renderizando antes, evitando troca de conteúdo visível no chartbeat-related-content if(el.className.includes('related-content-front')) return true; // garante que usa ao mínimo 280px de margem para fazer o lazyload var margin = clientHeight + Math.max(280, clientHeight * 0.2); // se a base do componente está acima da altura da tela do usuário, está oculto if(rect.bottom < 0 && rect.bottom > margin * -1) { return false; } // se o topo do elemento está abaixo da altura da tela do usuário, está oculto if(rect.top > margin) { return false; } // se a posição do topo é negativa, verifica se a altura dele ainda // compensa o que já foi scrollado if(rect.top < 0 && rect.height + rect.top < 0) { return false; } return true; }; var asynxNextFreeTime = () => { return new Promise((resolve) => { if(window.requestIdleCallback) { window.requestIdleCallback(resolve, { timeout: 5000, }); } else { window.requestAnimationFrame(resolve); } }); }; var asyncValidateIfElIsInViewPort = function(promise, el) { return promise.then(() => { if(el) { if(isElementInViewport(el) == true) { const cb = elementsToWatch.get(el); // remove da lista para não ser disparado novamente elementsToWatch.delete(el); cb(); } } }).then(asynxNextFreeTime); }; // inicia o fluxo de procura de elementos procurados var look = function() { if(window.requestIdleCallback) { window.requestIdleCallback(findByVisibleElements, { timeout: 5000, }); } else { window.requestAnimationFrame(findByVisibleElements); } }; var findByVisibleElements = function(ts) { var elapsedSinceLast = ts - lastAnimationTS; // se não teve nenhum evento que possa alterar a página if(hadAnEvent == false) { return look(); } if(elementsToWatch.size == 0) { return look(); } if(runningSearch == true) { return look(); } // procura por elementos visíveis apenas 5x/seg if(elapsedSinceLast < 1000/5) { return look(); } // atualiza o último ts lastAnimationTS = ts; // reseta status de scroll para não entrar novamente aqui hadAnEvent = false; // indica que está rodando a procura por elementos no viewport runningSearch = true; const done = Array.from(elementsToWatch.keys()).reduce(asyncValidateIfElIsInViewPort, Promise.resolve()); // obtém todos os elementos que podem ter view contabilizados //elementsToWatch.forEach(function(cb, el) { // if(isElementInViewport(el) == true) { // // remove da lista para não ser disparado novamente // elementsToWatch.delete(el); // cb(el); // } //}); done.then(function() { runningSearch = false; }); // reinicia o fluxo de procura look(); }; /** * Quando o elemento `el` entrar no viewport (-20%), cb será disparado. */ window.lazyload = function(el, cb) { if(el.nodeType != Node.ELEMENT_NODE) { throw new Error("element parameter should be a Element Node"); } if(typeof cb !== 'function') { throw new Error("callback parameter should be a Function"); } elementsToWatch.set(el, cb); } var setEvent = function() { hadAnEvent = true; }; window.addEventListener('scroll', setEvent, { capture: true, ive: true }); window.addEventListener('click', setEvent, { ive: true }); window.addEventListener('resize', setEvent, { ive: true }); window.addEventListener('load', setEvent, { once: true, ive: true }); window.addEventListener('DOMContentLoaded', setEvent, { once: true, ive: true }); window.gevent.on('allJSLoadedAndCreated', setEvent, window.gevent.RUN_ONCE); // inicia a validação look(); })();
  • AssineUOL
Topo

"Sol artificial" deve entrar em funcionamento em 2020 na China

Homem trabalha dentro de um reator de fusão nuclear HL-2M Tokamak, apelidado como o "sol artificial", em construção em Chengdu, província de Sichuan, China - Liu Haiyun/Chengdu Economic Daily/Reuters
Homem trabalha dentro de um reator de fusão nuclear HL-2M Tokamak, apelidado como o "sol artificial", em construção em Chengdu, província de Sichuan, China Imagem: Liu Haiyun/Chengdu Economic Daily/Reuters

De Tilt, em São Paulo

19/12/2019 13h41

O dispositivo tokamak HL-2M, construído para replicar a fusão nuclear teve uma importante atualização. De acordo com o cientista Duan Xuru, o projeto, que ficou popularmente conhecido como "Sol artificial", deve entrar em operação na China em 2020.

Em entrevista à revista Newsweek, os cientistas envolvidos na construção afirmaram que a ideia é replicar a fusão nuclear, mesma reação que alimenta o Sol. Com isso, a humanidade poderia ter uma fonte de energia limpa e praticamente ilimitada.

A aposta para isso são reatores chamados de tokamak, onde isótopos de hidrogênio (deutério e trítio) são expostos a temperaturas extremamente altas até se transformar em um plasma, fundir átomos e, assim, liberar energia.

Como funciona

A fusão nuclear é a fonte de energia do Sol e de todas as outras estrelas. Em condições de pressão e temperatura extremas, os átomos de hidrogênio entram em colisão e fusionam, liberando quantidades enormes de energia. A fusão de átomos leves libera quatro milhões de vezes mais energia que a combustão do carvão, do petróleo ou do gás (feitas em termelétricas), e quatro vezes mais energia que reações de fissão nuclear (realizadas em usinas nucleares).

Para reproduzir o que acontece nas estrelas, os pesquisadores colocam dentro de uma instalação experimental chamada tokamak isótopos de hidrogênio (deutérios e trítios) e precisam criar condições para que seus núcleos fusionem.

Essas condições são: temperatura muito elevada (da ordem de 150 milhões de graus Celsius), grande densidade de partículas para criar o maior número possível de colisões de átomos e um tempo de confinamento de energia longo o suficiente para que as colisões aconteçam na velocidade mais alta possível.

Ao conseguir criar a fusão nuclear e manter o processo de maneira estável por certo tempo, a energia liberada na fusão dos núcleos atômicos é absorvida em forma de calor pelas paredes da câmara a vácuo. Uma central usa esse calor para produzir vapor que, a partir de turbinas e alternadores, produzirá energia elétrica.

O processo de fusão nuclear é considerado o futuro da energia porque ele não emite gás carbônico (CO2) nem outros gases de efeito estufa, não cria rejeitos radiativos e usa material com nível de radiação muito mais baixo que o de usinas de fissão nuclear (em operação no mundo atualmente).

Em 2016, os cientistas chineses tinham conseguido manter estável o plasma de hidrogênio dentro da instalação durante 102 segundos, o que foi um recorde. No final do ano ado, o feito foi alcançar a temperatura de 100 milhões de graus Celsius.

O próximo desafio é reproduzir a fusão nuclear em equipamentos maiores, semi-industriais, para assim ampliar o número de fusões nucleares e manter as condições por longo tempo e testar as condições de produção de grande quantidade de energia.

Errata: este conteúdo foi atualizado
Ao contrário do que foi informado anteriormente, nenhuma pessoa com o sobrenome de Terremoto concedeu entrevista sobre o tema.